Skip to content
  • Auto
  • Light
  • Dark
DiscordForumGitHubSign up
View as Markdown
Copy Markdown

Open in Claude
Open in ChatGPT

Local tool execution

Often times, tool definitions will rely on importing code from other files or packages:

def my_tool():
# import code from other files
from my_repo.subfolder1.module import my_function
# import packages
import cowsay
# custom code

To ensure that your tools are able to run, you need to make sure that the files and packages they rely on are accessible from the Letta server. When running Letta locally, the tools are executed inside of the Docker container running the Letta service, and the files and packages they rely on must be accessible from the Docker container.

Tool definitions will often rely on importing code from other files. For example, say you have a repo with the following structure:

my_repo/
├── requirements.txt
├── subfolder1/
└── module.py

We want to import code from module.py in a custom tool as follows:

def my_tool():
from my_repo.subfolder1.module import my_function # MUST be inside the function scope
return my_function()

To ensure you can properly import my_function, you need to mount your repository in the Docker container and also explicitly set the location of tool execution by setting the TOOL_EXEC_DIR environment variable. sh docker run \ -v /path/to/my_repo:/app/my_repo \ # mount the volume -e TOOL_EXEC_DIR="/app/my_repo" \ # specify the directory -v ~/.letta/.persist/pgdata:/var/lib/postgresql/data \ -p 8283:8283 \ letta/letta:latest This will ensure that tools are executed inside of /app/my_repo and the files inside of my_repo are accessible via the volume.

You can specify packages to be installed in the tool execution environment by setting the TOOL_EXEC_VENV_NAME environment variable. This will enable Letta to explicitly create a virtual environment and and install packages specified by requirements.txt at the server start time.

Terminal window
docker run \
-v /path/to/my_repo:/app/my_repo \ # mount the volume
-e TOOL_EXEC_DIR="/app/my_repo" \ # specify the directory
-e TOOL_EXEC_VENV_NAME="env" \ # specify the virtual environment name
-v ~/.letta/.persist/pgdata:/var/lib/postgresql/data \
-p 8283:8283 \
letta/letta:latest

This will ensure that the packages specified in /app/my_repo/requirements.txt are installed in the virtual environment where the tools are executed.

Now, you can create a tool that imports modules from your tool execution directory or from the packages specified in requirements.txt. When defining custom tools, make sure you have a properly formatting docstring (so it can be parsed into the OpenAI tool schema) or use the args_schema parameter to specify the arguments for the tool.

from letta_client import Letta
def my_tool(my_arg: str) -> str:
"""
A custom tool that imports code from other files and packages.
Args:
my_arg (str): A string argument
"""
# import code from other files
from my_repo.subfolder1.module import my_function
# import packages
import cowsay
# custom code
return my_function(my_arg)
client = Letta(base_url="http://localhost:8283")
# create the tool
tool = client.tools.upsert_from_function(
func=my_tool
)
# create the agent with the tool
agent = client.agents.create(
memory_blocks=[
{"label": "human", "limit": 2000, "value": "Name: Bob"},
{"label": "persona", "limit": 2000, "value": "You are a friendly agent"}
],
model="openai/gpt-4o-mini",
embedding="openai/text-embedding-3-small",
tool_ids=[tool.id]
)

See more on creating custom tools here.