Skip to content
  • Auto
  • Light
  • Dark
DiscordForumGitHubSign up
View as Markdown
Copy Markdown

Open in Claude
Open in ChatGPT

Send Message

client.agents.messages.send(stringagentID, MessageSendParamsbody, RequestOptionsoptions?): LettaResponse { messages, stop_reason, usage } | Stream<LettaStreamingResponse>
post/v1/agents/{agent_id}/messages

Process a user message and return the agent's response. This endpoint accepts a message from a user and processes it through the agent.

The response format is controlled by the streaming field in the request body:

  • If streaming=false (default): Returns a complete LettaResponse with all messages
  • If streaming=true: Returns a Server-Sent Events (SSE) stream

Additional streaming options (only used when streaming=true):

  • stream_tokens: Stream individual tokens instead of complete steps
  • include_pings: Include keepalive pings to prevent connection timeouts
  • background: Process the request in the background
ParametersExpand Collapse
agentID: string

The ID of the agent in the format 'agent-'

minLength42
maxLength42
MessageSendParams = MessageSendParamsNonStreaming { streaming } | MessageSendParamsStreaming { streaming }
MessageSendParamsBase { assistant_message_tool_kwarg, assistant_message_tool_name, background, 9 more }
Deprecatedassistant_message_tool_kwarg?: string

The name of the message argument in the designated message tool. Still supported for legacy agent types, but deprecated for letta_v1_agent onward.

Deprecatedassistant_message_tool_name?: string

The name of the designated message tool. Still supported for legacy agent types, but deprecated for letta_v1_agent onward.

background?: boolean

Whether to process the request in the background (only used when streaming=true).

Deprecatedenable_thinking?: string

If set to True, enables reasoning before responses or tool calls from the agent.

include_pings?: boolean

Whether to include periodic keepalive ping messages in the stream to prevent connection timeouts (only used when streaming=true).

include_return_message_types?: Array<MessageType> | null

Only return specified message types in the response. If None (default) returns all messages.

Accepts one of the following:
"system_message"
"user_message"
"assistant_message"
"reasoning_message"
"hidden_reasoning_message"
"tool_call_message"
"tool_return_message"
"approval_request_message"
"approval_response_message"
input?: string | Array<TextContent { text, signature, type } | ImageContent { source, type } | ToolCallContent { id, input, name, 2 more } | 5 more> | null

Syntactic sugar for a single user message. Equivalent to messages=[{'role': 'user', 'content': input}].

Accepts one of the following:
string
Array<TextContent { text, signature, type } | ImageContent { source, type } | ToolCallContent { id, input, name, 2 more } | 5 more>
TextContent { text, signature, type }
text: string

The text content of the message.

signature?: string | null

Stores a unique identifier for any reasoning associated with this text content.

type?: "text"

The type of the message.

Accepts one of the following:
"text"
ImageContent { source, type }
source: URLImage { url, type } | Base64Image { data, media_type, detail, type } | LettaImage { file_id, data, detail, 2 more }

The source of the image.

Accepts one of the following:
URLImage { url, type }
url: string

The URL of the image.

type?: "url"

The source type for the image.

Accepts one of the following:
"url"
Base64Image { data, media_type, detail, type }
data: string

The base64 encoded image data.

media_type: string

The media type for the image.

detail?: string | null

What level of detail to use when processing and understanding the image (low, high, or auto to let the model decide)

type?: "base64"

The source type for the image.

Accepts one of the following:
"base64"
LettaImage { file_id, data, detail, 2 more }
file_id: string

The unique identifier of the image file persisted in storage.

data?: string | null

The base64 encoded image data.

detail?: string | null

What level of detail to use when processing and understanding the image (low, high, or auto to let the model decide)

media_type?: string | null

The media type for the image.

type?: "letta"

The source type for the image.

Accepts one of the following:
"letta"
type?: "image"

The type of the message.

Accepts one of the following:
"image"
ToolCallContent { id, input, name, 2 more }
id: string

A unique identifier for this specific tool call instance.

input: Record<string, unknown>

The parameters being passed to the tool, structured as a dictionary of parameter names to values.

name: string

The name of the tool being called.

signature?: string | null

Stores a unique identifier for any reasoning associated with this tool call.

type?: "tool_call"

Indicates this content represents a tool call event.

Accepts one of the following:
"tool_call"
ToolReturnContent { content, is_error, tool_call_id, type }
content: string

The content returned by the tool execution.

is_error: boolean

Indicates whether the tool execution resulted in an error.

tool_call_id: string

References the ID of the ToolCallContent that initiated this tool call.

type?: "tool_return"

Indicates this content represents a tool return event.

Accepts one of the following:
"tool_return"
ReasoningContent { is_native, reasoning, signature, type }

Sent via the Anthropic Messages API

is_native: boolean

Whether the reasoning content was generated by a reasoner model that processed this step.

reasoning: string

The intermediate reasoning or thought process content.

signature?: string | null

A unique identifier for this reasoning step.

type?: "reasoning"

Indicates this is a reasoning/intermediate step.

Accepts one of the following:
"reasoning"
RedactedReasoningContent { data, type }

Sent via the Anthropic Messages API

data: string

The redacted or filtered intermediate reasoning content.

type?: "redacted_reasoning"

Indicates this is a redacted thinking step.

Accepts one of the following:
"redacted_reasoning"
OmittedReasoningContent { signature, type }

A placeholder for reasoning content we know is present, but isn't returned by the provider (e.g. OpenAI GPT-5 on ChatCompletions)

signature?: string | null

A unique identifier for this reasoning step.

type?: "omitted_reasoning"

Indicates this is an omitted reasoning step.

Accepts one of the following:
"omitted_reasoning"
SummarizedReasoningContent { id, summary, encrypted_content, type }

The style of reasoning content returned by the OpenAI Responses API

id: string

The unique identifier for this reasoning step.

summary: Array<Summary>

Summaries of the reasoning content.

index: number

The index of the summary part.

text: string

The text of the summary part.

encrypted_content?: string

The encrypted reasoning content.

type?: "summarized_reasoning"

Indicates this is a summarized reasoning step.

Accepts one of the following:
"summarized_reasoning"
max_steps?: number

Maximum number of steps the agent should take to process the request.

messages?: Array<MessageCreate { content, role, batch_item_id, 5 more } | ApprovalCreate { approval_request_id, approvals, approve, 3 more } > | null

The messages to be sent to the agent.

Accepts one of the following:
MessageCreate { content, role, batch_item_id, 5 more }

Request to create a message

content: Array<LettaMessageContentUnion> | string

The content of the message.

Accepts one of the following:
TextContent { text, signature, type }
text: string

The text content of the message.

signature?: string | null

Stores a unique identifier for any reasoning associated with this text content.

type?: "text"

The type of the message.

Accepts one of the following:
"text"
ImageContent { source, type }
source: URLImage { url, type } | Base64Image { data, media_type, detail, type } | LettaImage { file_id, data, detail, 2 more }

The source of the image.

Accepts one of the following:
URLImage { url, type }
url: string

The URL of the image.

type?: "url"

The source type for the image.

Accepts one of the following:
"url"
Base64Image { data, media_type, detail, type }
data: string

The base64 encoded image data.

media_type: string

The media type for the image.

detail?: string | null

What level of detail to use when processing and understanding the image (low, high, or auto to let the model decide)

type?: "base64"

The source type for the image.

Accepts one of the following:
"base64"
LettaImage { file_id, data, detail, 2 more }
file_id: string

The unique identifier of the image file persisted in storage.

data?: string | null

The base64 encoded image data.

detail?: string | null

What level of detail to use when processing and understanding the image (low, high, or auto to let the model decide)

media_type?: string | null

The media type for the image.

type?: "letta"

The source type for the image.

Accepts one of the following:
"letta"
type?: "image"

The type of the message.

Accepts one of the following:
"image"
ToolCallContent { id, input, name, 2 more }
id: string

A unique identifier for this specific tool call instance.

input: Record<string, unknown>

The parameters being passed to the tool, structured as a dictionary of parameter names to values.

name: string

The name of the tool being called.

signature?: string | null

Stores a unique identifier for any reasoning associated with this tool call.

type?: "tool_call"

Indicates this content represents a tool call event.

Accepts one of the following:
"tool_call"
ToolReturnContent { content, is_error, tool_call_id, type }
content: string

The content returned by the tool execution.

is_error: boolean

Indicates whether the tool execution resulted in an error.

tool_call_id: string

References the ID of the ToolCallContent that initiated this tool call.

type?: "tool_return"

Indicates this content represents a tool return event.

Accepts one of the following:
"tool_return"
ReasoningContent { is_native, reasoning, signature, type }

Sent via the Anthropic Messages API

is_native: boolean

Whether the reasoning content was generated by a reasoner model that processed this step.

reasoning: string

The intermediate reasoning or thought process content.

signature?: string | null

A unique identifier for this reasoning step.

type?: "reasoning"

Indicates this is a reasoning/intermediate step.

Accepts one of the following:
"reasoning"
RedactedReasoningContent { data, type }

Sent via the Anthropic Messages API

data: string

The redacted or filtered intermediate reasoning content.

type?: "redacted_reasoning"

Indicates this is a redacted thinking step.

Accepts one of the following:
"redacted_reasoning"
OmittedReasoningContent { signature, type }

A placeholder for reasoning content we know is present, but isn't returned by the provider (e.g. OpenAI GPT-5 on ChatCompletions)

signature?: string | null

A unique identifier for this reasoning step.

type?: "omitted_reasoning"

Indicates this is an omitted reasoning step.

Accepts one of the following:
"omitted_reasoning"
string
role: "user" | "system" | "assistant"

The role of the participant.

Accepts one of the following:
"user"
"system"
"assistant"
batch_item_id?: string | null

The id of the LLMBatchItem that this message is associated with

group_id?: string | null

The multi-agent group that the message was sent in

name?: string | null

The name of the participant.

otid?: string | null

The offline threading id associated with this message

sender_id?: string | null

The id of the sender of the message, can be an identity id or agent id

type?: "message" | null

The message type to be created.

Accepts one of the following:
"message"
ApprovalCreate { approval_request_id, approvals, approve, 3 more }

Input to approve or deny a tool call request

Deprecatedapproval_request_id?: string | null

The message ID of the approval request

approvals?: Array<ApprovalReturn { approve, tool_call_id, reason, type } | ToolReturn { status, tool_call_id, tool_return, 3 more } > | null

The list of approval responses

Accepts one of the following:
ApprovalReturn { approve, tool_call_id, reason, type }
approve: boolean

Whether the tool has been approved

tool_call_id: string

The ID of the tool call that corresponds to this approval

reason?: string | null

An optional explanation for the provided approval status

type?: "approval"

The message type to be created.

Accepts one of the following:
"approval"
ToolReturn { status, tool_call_id, tool_return, 3 more }
status: "success" | "error"
Accepts one of the following:
"success"
"error"
tool_call_id: string
tool_return: string
stderr?: Array<string> | null
stdout?: Array<string> | null
type?: "tool"

The message type to be created.

Accepts one of the following:
"tool"
Deprecatedapprove?: boolean | null

Whether the tool has been approved

group_id?: string | null

The multi-agent group that the message was sent in

Deprecatedreason?: string | null

An optional explanation for the provided approval status

type?: "approval"

The message type to be created.

Accepts one of the following:
"approval"
stream_tokens?: boolean

Flag to determine if individual tokens should be streamed, rather than streaming per step (only used when streaming=true).

streaming?: false

If True, returns a streaming response (Server-Sent Events). If False (default), returns a complete response.

Accepts one of the following:
false
Deprecateduse_assistant_message?: boolean

Whether the server should parse specific tool call arguments (default send_message) as AssistantMessage objects. Still supported for legacy agent types, but deprecated for letta_v1_agent onward.

MessageSendParamsNonStreaming extends MessageSendParamsBase { assistant_message_tool_kwarg, assistant_message_tool_name, background, 9 more } { streaming }
streaming?: false

If True, returns a streaming response (Server-Sent Events). If False (default), returns a complete response.

Accepts one of the following:
false
MessageSendParamsNonStreaming extends MessageSendParamsBase { assistant_message_tool_kwarg, assistant_message_tool_name, background, 9 more } { streaming }
streaming?: false

If True, returns a streaming response (Server-Sent Events). If False (default), returns a complete response.

Accepts one of the following:
false
ReturnsExpand Collapse
LettaResponse { messages, stop_reason, usage }

Response object from an agent interaction, consisting of the new messages generated by the agent and usage statistics. The type of the returned messages can be either Message or LettaMessage, depending on what was specified in the request.

Attributes: messages (List[Union[Message, LettaMessage]]): The messages returned by the agent. usage (LettaUsageStatistics): The usage statistics

messages: Array<LettaMessageUnion>

The messages returned by the agent.

Accepts one of the following:
SystemMessage { id, content, date, 8 more }

A message generated by the system. Never streamed back on a response, only used for cursor pagination.

Args: id (str): The ID of the message date (datetime): The date the message was created in ISO format name (Optional[str]): The name of the sender of the message content (str): The message content sent by the system

id: string
content: string

The message content sent by the system

date: string
is_err?: boolean | null
message_type?: "system_message"

The type of the message.

Accepts one of the following:
"system_message"
name?: string | null
otid?: string | null
run_id?: string | null
sender_id?: string | null
seq_id?: number | null
step_id?: string | null
UserMessage { id, content, date, 8 more }

A message sent by the user. Never streamed back on a response, only used for cursor pagination.

Args: id (str): The ID of the message date (datetime): The date the message was created in ISO format name (Optional[str]): The name of the sender of the message content (Union[str, List[LettaUserMessageContentUnion]]): The message content sent by the user (can be a string or an array of multi-modal content parts)

id: string
content: Array<LettaUserMessageContentUnion> | string

The message content sent by the user (can be a string or an array of multi-modal content parts)

Accepts one of the following:
TextContent { text, signature, type }
text: string

The text content of the message.

signature?: string | null

Stores a unique identifier for any reasoning associated with this text content.

type?: "text"

The type of the message.

Accepts one of the following:
"text"
ImageContent { source, type }
source: URLImage { url, type } | Base64Image { data, media_type, detail, type } | LettaImage { file_id, data, detail, 2 more }

The source of the image.

Accepts one of the following:
URLImage { url, type }
url: string

The URL of the image.

type?: "url"

The source type for the image.

Accepts one of the following:
"url"
Base64Image { data, media_type, detail, type }
data: string

The base64 encoded image data.

media_type: string

The media type for the image.

detail?: string | null

What level of detail to use when processing and understanding the image (low, high, or auto to let the model decide)

type?: "base64"

The source type for the image.

Accepts one of the following:
"base64"
LettaImage { file_id, data, detail, 2 more }
file_id: string

The unique identifier of the image file persisted in storage.

data?: string | null

The base64 encoded image data.

detail?: string | null

What level of detail to use when processing and understanding the image (low, high, or auto to let the model decide)

media_type?: string | null

The media type for the image.

type?: "letta"

The source type for the image.

Accepts one of the following:
"letta"
type?: "image"

The type of the message.

Accepts one of the following:
"image"
string
date: string
is_err?: boolean | null
message_type?: "user_message"

The type of the message.

Accepts one of the following:
"user_message"
name?: string | null
otid?: string | null
run_id?: string | null
sender_id?: string | null
seq_id?: number | null
step_id?: string | null
ReasoningMessage { id, date, reasoning, 10 more }

Representation of an agent's internal reasoning.

Args: id (str): The ID of the message date (datetime): The date the message was created in ISO format name (Optional[str]): The name of the sender of the message source (Literal["reasoner_model", "non_reasoner_model"]): Whether the reasoning content was generated natively by a reasoner model or derived via prompting reasoning (str): The internal reasoning of the agent signature (Optional[str]): The model-generated signature of the reasoning step

id: string
date: string
reasoning: string
is_err?: boolean | null
message_type?: "reasoning_message"

The type of the message.

Accepts one of the following:
"reasoning_message"
name?: string | null
otid?: string | null
run_id?: string | null
sender_id?: string | null
seq_id?: number | null
signature?: string | null
source?: "reasoner_model" | "non_reasoner_model"
Accepts one of the following:
"reasoner_model"
"non_reasoner_model"
step_id?: string | null
HiddenReasoningMessage { id, date, state, 9 more }

Representation of an agent's internal reasoning where reasoning content has been hidden from the response.

Args: id (str): The ID of the message date (datetime): The date the message was created in ISO format name (Optional[str]): The name of the sender of the message state (Literal["redacted", "omitted"]): Whether the reasoning content was redacted by the provider or simply omitted by the API hidden_reasoning (Optional[str]): The internal reasoning of the agent

id: string
date: string
state: "redacted" | "omitted"
Accepts one of the following:
"redacted"
"omitted"
hidden_reasoning?: string | null
is_err?: boolean | null
message_type?: "hidden_reasoning_message"

The type of the message.

Accepts one of the following:
"hidden_reasoning_message"
name?: string | null
otid?: string | null
run_id?: string | null
sender_id?: string | null
seq_id?: number | null
step_id?: string | null
ToolCallMessage { id, date, tool_call, 9 more }

A message representing a request to call a tool (generated by the LLM to trigger tool execution).

Args: id (str): The ID of the message date (datetime): The date the message was created in ISO format name (Optional[str]): The name of the sender of the message tool_call (Union[ToolCall, ToolCallDelta]): The tool call

id: string
date: string
Deprecatedtool_call: ToolCall { arguments, name, tool_call_id } | ToolCallDelta { arguments, name, tool_call_id }
Accepts one of the following:
ToolCall { arguments, name, tool_call_id }
arguments: string
name: string
tool_call_id: string
ToolCallDelta { arguments, name, tool_call_id }
arguments?: string | null
name?: string | null
tool_call_id?: string | null
is_err?: boolean | null
message_type?: "tool_call_message"

The type of the message.

Accepts one of the following:
"tool_call_message"
name?: string | null
otid?: string | null
run_id?: string | null
sender_id?: string | null
seq_id?: number | null
step_id?: string | null
tool_calls?: Array<ToolCall { arguments, name, tool_call_id } > | ToolCallDelta { arguments, name, tool_call_id } | null
Accepts one of the following:
Array<ToolCall { arguments, name, tool_call_id } >
arguments: string
name: string
tool_call_id: string
ToolCallDelta { arguments, name, tool_call_id }
arguments?: string | null
name?: string | null
tool_call_id?: string | null
ToolReturnMessage { id, date, status, 13 more }

A message representing the return value of a tool call (generated by Letta executing the requested tool).

Args: id (str): The ID of the message date (datetime): The date the message was created in ISO format name (Optional[str]): The name of the sender of the message tool_return (str): The return value of the tool (deprecated, use tool_returns) status (Literal["success", "error"]): The status of the tool call (deprecated, use tool_returns) tool_call_id (str): A unique identifier for the tool call that generated this message (deprecated, use tool_returns) stdout (Optional[List(str)]): Captured stdout (e.g. prints, logs) from the tool invocation (deprecated, use tool_returns) stderr (Optional[List(str)]): Captured stderr from the tool invocation (deprecated, use tool_returns) tool_returns (Optional[List[ToolReturn]]): List of tool returns for multi-tool support

id: string
date: string
Deprecatedstatus: "success" | "error"
Accepts one of the following:
"success"
"error"
Deprecatedtool_call_id: string
Deprecatedtool_return: string
is_err?: boolean | null
message_type?: "tool_return_message"

The type of the message.

Accepts one of the following:
"tool_return_message"
name?: string | null
otid?: string | null
run_id?: string | null
sender_id?: string | null
seq_id?: number | null
Deprecatedstderr?: Array<string> | null
Deprecatedstdout?: Array<string> | null
step_id?: string | null
tool_returns?: Array<ToolReturn { status, tool_call_id, tool_return, 3 more } > | null
status: "success" | "error"
Accepts one of the following:
"success"
"error"
tool_call_id: string
tool_return: string
stderr?: Array<string> | null
stdout?: Array<string> | null
type?: "tool"

The message type to be created.

Accepts one of the following:
"tool"
AssistantMessage { id, content, date, 8 more }

A message sent by the LLM in response to user input. Used in the LLM context.

Args: id (str): The ID of the message date (datetime): The date the message was created in ISO format name (Optional[str]): The name of the sender of the message content (Union[str, List[LettaAssistantMessageContentUnion]]): The message content sent by the agent (can be a string or an array of content parts)

id: string
content: Array<LettaAssistantMessageContentUnion { text, signature, type } > | string

The message content sent by the agent (can be a string or an array of content parts)

Accepts one of the following:
Array<LettaAssistantMessageContentUnion { text, signature, type } >
text: string

The text content of the message.

signature?: string | null

Stores a unique identifier for any reasoning associated with this text content.

type?: "text"

The type of the message.

Accepts one of the following:
"text"
string
date: string
is_err?: boolean | null
message_type?: "assistant_message"

The type of the message.

Accepts one of the following:
"assistant_message"
name?: string | null
otid?: string | null
run_id?: string | null
sender_id?: string | null
seq_id?: number | null
step_id?: string | null
ApprovalRequestMessage { id, date, tool_call, 9 more }

A message representing a request for approval to call a tool (generated by the LLM to trigger tool execution).

Args: id (str): The ID of the message date (datetime): The date the message was created in ISO format name (Optional[str]): The name of the sender of the message tool_call (ToolCall): The tool call

id: string
date: string
Deprecatedtool_call: ToolCall { arguments, name, tool_call_id } | ToolCallDelta { arguments, name, tool_call_id }

The tool call that has been requested by the llm to run

Accepts one of the following:
ToolCall { arguments, name, tool_call_id }
arguments: string
name: string
tool_call_id: string
ToolCallDelta { arguments, name, tool_call_id }
arguments?: string | null
name?: string | null
tool_call_id?: string | null
is_err?: boolean | null
message_type?: "approval_request_message"

The type of the message.

Accepts one of the following:
"approval_request_message"
name?: string | null
otid?: string | null
run_id?: string | null
sender_id?: string | null
seq_id?: number | null
step_id?: string | null
tool_calls?: Array<ToolCall { arguments, name, tool_call_id } > | ToolCallDelta { arguments, name, tool_call_id } | null

The tool calls that have been requested by the llm to run, which are pending approval

Accepts one of the following:
Array<ToolCall { arguments, name, tool_call_id } >
arguments: string
name: string
tool_call_id: string
ToolCallDelta { arguments, name, tool_call_id }
arguments?: string | null
name?: string | null
tool_call_id?: string | null
ApprovalResponseMessage { id, date, approval_request_id, 11 more }

A message representing a response form the user indicating whether a tool has been approved to run.

Args: id (str): The ID of the message date (datetime): The date the message was created in ISO format name (Optional[str]): The name of the sender of the message approve: (bool) Whether the tool has been approved approval_request_id: The ID of the approval request reason: (Optional[str]) An optional explanation for the provided approval status

id: string
date: string
Deprecatedapproval_request_id?: string | null

The message ID of the approval request

approvals?: Array<ApprovalReturn { approve, tool_call_id, reason, type } | ToolReturn { status, tool_call_id, tool_return, 3 more } > | null

The list of approval responses

Accepts one of the following:
ApprovalReturn { approve, tool_call_id, reason, type }
approve: boolean

Whether the tool has been approved

tool_call_id: string

The ID of the tool call that corresponds to this approval

reason?: string | null

An optional explanation for the provided approval status

type?: "approval"

The message type to be created.

Accepts one of the following:
"approval"
ToolReturn { status, tool_call_id, tool_return, 3 more }
status: "success" | "error"
Accepts one of the following:
"success"
"error"
tool_call_id: string
tool_return: string
stderr?: Array<string> | null
stdout?: Array<string> | null
type?: "tool"

The message type to be created.

Accepts one of the following:
"tool"
Deprecatedapprove?: boolean | null

Whether the tool has been approved

is_err?: boolean | null
message_type?: "approval_response_message"

The type of the message.

Accepts one of the following:
"approval_response_message"
name?: string | null
otid?: string | null
Deprecatedreason?: string | null

An optional explanation for the provided approval status

run_id?: string | null
sender_id?: string | null
seq_id?: number | null
step_id?: string | null
SummaryMessage { id, date, summary, 8 more }

A message representing a summary of the conversation. Sent to the LLM as a user or system message depending on the provider.

id: string
date: string
summary: string
is_err?: boolean | null
message_type?: "summary"
Accepts one of the following:
"summary"
name?: string | null
otid?: string | null
run_id?: string | null
sender_id?: string | null
seq_id?: number | null
step_id?: string | null
EventMessage { id, date, event_data, 9 more }

A message for notifying the developer that an event that has occured (e.g. a compaction). Events are NOT part of the context window.

id: string
date: string
event_data: Record<string, unknown>
event_type: "compaction"
Accepts one of the following:
"compaction"
is_err?: boolean | null
message_type?: "event"
Accepts one of the following:
"event"
name?: string | null
otid?: string | null
run_id?: string | null
sender_id?: string | null
seq_id?: number | null
step_id?: string | null
stop_reason: StopReason { stop_reason, message_type }

The stop reason from Letta indicating why agent loop stopped execution.

stop_reason: StopReasonType

The reason why execution stopped.

Accepts one of the following:
"end_turn"
"error"
"llm_api_error"
"invalid_llm_response"
"invalid_tool_call"
"max_steps"
"no_tool_call"
"tool_rule"
"cancelled"
"requires_approval"
message_type?: "stop_reason"

The type of the message.

Accepts one of the following:
"stop_reason"
usage: Usage { completion_tokens, message_type, prompt_tokens, 3 more }

The usage statistics of the agent.

completion_tokens?: number

The number of tokens generated by the agent.

message_type?: "usage_statistics"
Accepts one of the following:
"usage_statistics"
prompt_tokens?: number

The number of tokens in the prompt.

run_ids?: Array<string> | null

The background task run IDs associated with the agent interaction

step_count?: number

The number of steps taken by the agent.

total_tokens?: number

The total number of tokens processed by the agent.

Send Message
import Letta from '@letta-ai/letta-client';

const client = new Letta({
  apiKey: 'My API Key',
});

const lettaResponse = await client.agents.messages.send('agent-123e4567-e89b-42d3-8456-426614174000');

console.log(lettaResponse.messages);
{
  "messages": [
    {
      "id": "id",
      "content": "content",
      "date": "2019-12-27T18:11:19.117Z",
      "is_err": true,
      "message_type": "system_message",
      "name": "name",
      "otid": "otid",
      "run_id": "run_id",
      "sender_id": "sender_id",
      "seq_id": 0,
      "step_id": "step_id"
    }
  ],
  "stop_reason": {
    "stop_reason": "end_turn",
    "message_type": "stop_reason"
  },
  "usage": {
    "completion_tokens": 0,
    "message_type": "usage_statistics",
    "prompt_tokens": 0,
    "run_ids": [
      "string"
    ],
    "step_count": 0,
    "total_tokens": 0
  }
}
Returns Examples
{
  "messages": [
    {
      "id": "id",
      "content": "content",
      "date": "2019-12-27T18:11:19.117Z",
      "is_err": true,
      "message_type": "system_message",
      "name": "name",
      "otid": "otid",
      "run_id": "run_id",
      "sender_id": "sender_id",
      "seq_id": 0,
      "step_id": "step_id"
    }
  ],
  "stop_reason": {
    "stop_reason": "end_turn",
    "message_type": "stop_reason"
  },
  "usage": {
    "completion_tokens": 0,
    "message_type": "usage_statistics",
    "prompt_tokens": 0,
    "run_ids": [
      "string"
    ],
    "step_count": 0,
    "total_tokens": 0
  }
}