Get a single archive by its ID.
Parameters
Returns
Get Archive By Id
from letta_client import Letta
client = Letta(
api_key="My API Key",
)
archive = client.archives.retrieve(
"archive-123e4567-e89b-42d3-8456-426614174000",
)
print(archive.id)
{
"id": "archive-123e4567-e89b-12d3-a456-426614174000",
"created_at": "2019-12-27T18:11:19.117Z",
"embedding_config": {
"embedding_dim": 0,
"embedding_endpoint_type": "openai",
"embedding_model": "embedding_model",
"azure_deployment": "azure_deployment",
"azure_endpoint": "azure_endpoint",
"azure_version": "azure_version",
"batch_size": 0,
"embedding_chunk_size": 0,
"embedding_endpoint": "embedding_endpoint",
"handle": "handle"
},
"name": "name",
"created_by_id": "created_by_id",
"description": "description",
"last_updated_by_id": "last_updated_by_id",
"metadata": {
"foo": "bar"
},
"updated_at": "2019-12-27T18:11:19.117Z",
"vector_db_provider": "native"
}Returns Examples
{
"id": "archive-123e4567-e89b-12d3-a456-426614174000",
"created_at": "2019-12-27T18:11:19.117Z",
"embedding_config": {
"embedding_dim": 0,
"embedding_endpoint_type": "openai",
"embedding_model": "embedding_model",
"azure_deployment": "azure_deployment",
"azure_endpoint": "azure_endpoint",
"azure_version": "azure_version",
"batch_size": 0,
"embedding_chunk_size": 0,
"embedding_endpoint": "embedding_endpoint",
"handle": "handle"
},
"name": "name",
"created_by_id": "created_by_id",
"description": "description",
"last_updated_by_id": "last_updated_by_id",
"metadata": {
"foo": "bar"
},
"updated_at": "2019-12-27T18:11:19.117Z",
"vector_db_provider": "native"
}