List available LLM models using the asynchronous implementation for improved performance.
Returns Model format which extends LLMConfig with additional metadata fields. Legacy LLMConfig fields are marked as deprecated but still available for backward compatibility.
Parameters
provider_name: Optional[str]
Returns
List Llm Models
from letta_client import Letta
client = Letta(
api_key="My API Key",
)
models = client.models.list()
print(models)
[
{
"context_window": 0,
"max_context_window": 0,
"model": "model",
"model_endpoint_type": "openai",
"name": "name",
"provider_type": "anthropic",
"compatibility_type": "gguf",
"display_name": "display_name",
"enable_reasoner": true,
"frequency_penalty": 0,
"handle": "handle",
"max_reasoning_tokens": 0,
"max_tokens": 0,
"model_endpoint": "model_endpoint",
"model_type": "llm",
"model_wrapper": "model_wrapper",
"parallel_tool_calls": true,
"provider_category": "base",
"provider_name": "provider_name",
"put_inner_thoughts_in_kwargs": true,
"reasoning_effort": "minimal",
"temperature": 0,
"tier": "tier",
"verbosity": "low"
}
]Returns Examples
[
{
"context_window": 0,
"max_context_window": 0,
"model": "model",
"model_endpoint_type": "openai",
"name": "name",
"provider_type": "anthropic",
"compatibility_type": "gguf",
"display_name": "display_name",
"enable_reasoner": true,
"frequency_penalty": 0,
"handle": "handle",
"max_reasoning_tokens": 0,
"max_tokens": 0,
"model_endpoint": "model_endpoint",
"model_type": "llm",
"model_wrapper": "model_wrapper",
"parallel_tool_calls": true,
"provider_category": "base",
"provider_name": "provider_name",
"put_inner_thoughts_in_kwargs": true,
"reasoning_effort": "minimal",
"temperature": 0,
"tier": "tier",
"verbosity": "low"
}
]