Skip to content
  • Auto
  • Light
  • Dark
DiscordForumGitHubSign up
View as Markdown
Copy Markdown

Open in Claude
Open in ChatGPT

Send Group Message

groups.messages.send(strgroup_id, MessageSendParams**kwargs) -> LettaResponse
post/v1/groups/{group_id}/messages

Process a user message and return the group's response. This endpoint accepts a message from a user and processes it through through agents in the group based on the specified pattern

ParametersExpand Collapse
group_id: str

The ID of the group in the format 'group-'

minLength42
maxLength42
Deprecatedassistant_message_tool_kwarg: Optional[str]

The name of the message argument in the designated message tool. Still supported for legacy agent types, but deprecated for letta_v1_agent onward.

Deprecatedassistant_message_tool_name: Optional[str]

The name of the designated message tool. Still supported for legacy agent types, but deprecated for letta_v1_agent onward.

Deprecatedenable_thinking: Optional[str]

If set to True, enables reasoning before responses or tool calls from the agent.

include_return_message_types: Optional[List[MessageType]]

Only return specified message types in the response. If None (default) returns all messages.

Accepts one of the following:
"system_message"
"user_message"
"assistant_message"
"reasoning_message"
"hidden_reasoning_message"
"tool_call_message"
"tool_return_message"
"approval_request_message"
"approval_response_message"
input: Optional[Union[str, Iterable[InputUnionMember1], null]]

Syntactic sugar for a single user message. Equivalent to messages=[{'role': 'user', 'content': input}].

Accepts one of the following:
InputUnionMember0 = str
InputUnionMember1 = Iterable[InputUnionMember1]
Accepts one of the following:
class TextContent:
text: str

The text content of the message.

signature: Optional[str]

Stores a unique identifier for any reasoning associated with this text content.

type: Optional[Literal["text"]]

The type of the message.

Accepts one of the following:
"text"
class ImageContent:
source: Source

The source of the image.

Accepts one of the following:
class SourceURLImage:
url: str

The URL of the image.

type: Optional[Literal["url"]]

The source type for the image.

Accepts one of the following:
"url"
class SourceBase64Image:
data: str

The base64 encoded image data.

media_type: str

The media type for the image.

detail: Optional[str]

What level of detail to use when processing and understanding the image (low, high, or auto to let the model decide)

type: Optional[Literal["base64"]]

The source type for the image.

Accepts one of the following:
"base64"
class SourceLettaImage:
file_id: str

The unique identifier of the image file persisted in storage.

data: Optional[str]

The base64 encoded image data.

detail: Optional[str]

What level of detail to use when processing and understanding the image (low, high, or auto to let the model decide)

media_type: Optional[str]

The media type for the image.

type: Optional[Literal["letta"]]

The source type for the image.

Accepts one of the following:
"letta"
type: Optional[Literal["image"]]

The type of the message.

Accepts one of the following:
"image"
class ToolCallContent:
id: str

A unique identifier for this specific tool call instance.

input: Dict[str, object]

The parameters being passed to the tool, structured as a dictionary of parameter names to values.

name: str

The name of the tool being called.

signature: Optional[str]

Stores a unique identifier for any reasoning associated with this tool call.

type: Optional[Literal["tool_call"]]

Indicates this content represents a tool call event.

Accepts one of the following:
"tool_call"
class ToolReturnContent:
content: str

The content returned by the tool execution.

is_error: bool

Indicates whether the tool execution resulted in an error.

tool_call_id: str

References the ID of the ToolCallContent that initiated this tool call.

type: Optional[Literal["tool_return"]]

Indicates this content represents a tool return event.

Accepts one of the following:
"tool_return"
class ReasoningContent:

Sent via the Anthropic Messages API

is_native: bool

Whether the reasoning content was generated by a reasoner model that processed this step.

reasoning: str

The intermediate reasoning or thought process content.

signature: Optional[str]

A unique identifier for this reasoning step.

type: Optional[Literal["reasoning"]]

Indicates this is a reasoning/intermediate step.

Accepts one of the following:
"reasoning"
class RedactedReasoningContent:

Sent via the Anthropic Messages API

data: str

The redacted or filtered intermediate reasoning content.

type: Optional[Literal["redacted_reasoning"]]

Indicates this is a redacted thinking step.

Accepts one of the following:
"redacted_reasoning"
class OmittedReasoningContent:

A placeholder for reasoning content we know is present, but isn't returned by the provider (e.g. OpenAI GPT-5 on ChatCompletions)

signature: Optional[str]

A unique identifier for this reasoning step.

type: Optional[Literal["omitted_reasoning"]]

Indicates this is an omitted reasoning step.

Accepts one of the following:
"omitted_reasoning"
class InputUnionMember1SummarizedReasoningContent:

The style of reasoning content returned by the OpenAI Responses API

id: str

The unique identifier for this reasoning step.

summary: Iterable[InputUnionMember1SummarizedReasoningContentSummary]

Summaries of the reasoning content.

index: int

The index of the summary part.

text: str

The text of the summary part.

encrypted_content: Optional[str]

The encrypted reasoning content.

type: Optional[Literal["summarized_reasoning"]]

Indicates this is a summarized reasoning step.

Accepts one of the following:
"summarized_reasoning"
max_steps: Optional[int]

Maximum number of steps the agent should take to process the request.

messages: Optional[Iterable[Message]]

The messages to be sent to the agent.

Accepts one of the following:
class MessageCreate:

Request to create a message

content: Union[List[LettaMessageContentUnion], str]

The content of the message.

Accepts one of the following:
ContentUnionMember0 = List[LettaMessageContentUnion]
Accepts one of the following:
class TextContent:
text: str

The text content of the message.

signature: Optional[str]

Stores a unique identifier for any reasoning associated with this text content.

type: Optional[Literal["text"]]

The type of the message.

Accepts one of the following:
"text"
class ImageContent:
source: Source

The source of the image.

Accepts one of the following:
class SourceURLImage:
url: str

The URL of the image.

type: Optional[Literal["url"]]

The source type for the image.

Accepts one of the following:
"url"
class SourceBase64Image:
data: str

The base64 encoded image data.

media_type: str

The media type for the image.

detail: Optional[str]

What level of detail to use when processing and understanding the image (low, high, or auto to let the model decide)

type: Optional[Literal["base64"]]

The source type for the image.

Accepts one of the following:
"base64"
class SourceLettaImage:
file_id: str

The unique identifier of the image file persisted in storage.

data: Optional[str]

The base64 encoded image data.

detail: Optional[str]

What level of detail to use when processing and understanding the image (low, high, or auto to let the model decide)

media_type: Optional[str]

The media type for the image.

type: Optional[Literal["letta"]]

The source type for the image.

Accepts one of the following:
"letta"
type: Optional[Literal["image"]]

The type of the message.

Accepts one of the following:
"image"
class ToolCallContent:
id: str

A unique identifier for this specific tool call instance.

input: Dict[str, object]

The parameters being passed to the tool, structured as a dictionary of parameter names to values.

name: str

The name of the tool being called.

signature: Optional[str]

Stores a unique identifier for any reasoning associated with this tool call.

type: Optional[Literal["tool_call"]]

Indicates this content represents a tool call event.

Accepts one of the following:
"tool_call"
class ToolReturnContent:
content: str

The content returned by the tool execution.

is_error: bool

Indicates whether the tool execution resulted in an error.

tool_call_id: str

References the ID of the ToolCallContent that initiated this tool call.

type: Optional[Literal["tool_return"]]

Indicates this content represents a tool return event.

Accepts one of the following:
"tool_return"
class ReasoningContent:

Sent via the Anthropic Messages API

is_native: bool

Whether the reasoning content was generated by a reasoner model that processed this step.

reasoning: str

The intermediate reasoning or thought process content.

signature: Optional[str]

A unique identifier for this reasoning step.

type: Optional[Literal["reasoning"]]

Indicates this is a reasoning/intermediate step.

Accepts one of the following:
"reasoning"
class RedactedReasoningContent:

Sent via the Anthropic Messages API

data: str

The redacted or filtered intermediate reasoning content.

type: Optional[Literal["redacted_reasoning"]]

Indicates this is a redacted thinking step.

Accepts one of the following:
"redacted_reasoning"
class OmittedReasoningContent:

A placeholder for reasoning content we know is present, but isn't returned by the provider (e.g. OpenAI GPT-5 on ChatCompletions)

signature: Optional[str]

A unique identifier for this reasoning step.

type: Optional[Literal["omitted_reasoning"]]

Indicates this is an omitted reasoning step.

Accepts one of the following:
"omitted_reasoning"
ContentUnionMember1 = str
role: Literal["user", "system", "assistant"]

The role of the participant.

Accepts one of the following:
"user"
"system"
"assistant"
batch_item_id: Optional[str]

The id of the LLMBatchItem that this message is associated with

group_id: Optional[str]

The multi-agent group that the message was sent in

name: Optional[str]

The name of the participant.

otid: Optional[str]

The offline threading id associated with this message

sender_id: Optional[str]

The id of the sender of the message, can be an identity id or agent id

type: Optional[Literal["message"]]

The message type to be created.

Accepts one of the following:
"message"
class ApprovalCreate:

Input to approve or deny a tool call request

Deprecatedapproval_request_id: Optional[str]

The message ID of the approval request

approvals: Optional[List[Approval]]

The list of approval responses

Accepts one of the following:
class ApprovalApprovalReturn:
approve: bool

Whether the tool has been approved

tool_call_id: str

The ID of the tool call that corresponds to this approval

reason: Optional[str]

An optional explanation for the provided approval status

type: Optional[Literal["approval"]]

The message type to be created.

Accepts one of the following:
"approval"
class ToolReturn:
status: Literal["success", "error"]
Accepts one of the following:
"success"
"error"
tool_call_id: str
tool_return: str
stderr: Optional[List[str]]
stdout: Optional[List[str]]
type: Optional[Literal["tool"]]

The message type to be created.

Accepts one of the following:
"tool"
Deprecatedapprove: Optional[bool]

Whether the tool has been approved

group_id: Optional[str]

The multi-agent group that the message was sent in

Deprecatedreason: Optional[str]

An optional explanation for the provided approval status

type: Optional[Literal["approval"]]

The message type to be created.

Accepts one of the following:
"approval"
Deprecateduse_assistant_message: Optional[bool]

Whether the server should parse specific tool call arguments (default send_message) as AssistantMessage objects. Still supported for legacy agent types, but deprecated for letta_v1_agent onward.

ReturnsExpand Collapse
class LettaResponse:

Response object from an agent interaction, consisting of the new messages generated by the agent and usage statistics. The type of the returned messages can be either Message or LettaMessage, depending on what was specified in the request.

Attributes: messages (List[Union[Message, LettaMessage]]): The messages returned by the agent. usage (LettaUsageStatistics): The usage statistics

messages: List[LettaMessageUnion]

The messages returned by the agent.

Accepts one of the following:
class SystemMessage:

A message generated by the system. Never streamed back on a response, only used for cursor pagination.

Args: id (str): The ID of the message date (datetime): The date the message was created in ISO format name (Optional[str]): The name of the sender of the message content (str): The message content sent by the system

id: str
content: str

The message content sent by the system

date: datetime
is_err: Optional[bool]
message_type: Optional[Literal["system_message"]]

The type of the message.

Accepts one of the following:
"system_message"
name: Optional[str]
otid: Optional[str]
run_id: Optional[str]
sender_id: Optional[str]
seq_id: Optional[int]
step_id: Optional[str]
class UserMessage:

A message sent by the user. Never streamed back on a response, only used for cursor pagination.

Args: id (str): The ID of the message date (datetime): The date the message was created in ISO format name (Optional[str]): The name of the sender of the message content (Union[str, List[LettaUserMessageContentUnion]]): The message content sent by the user (can be a string or an array of multi-modal content parts)

id: str
content: Union[List[LettaUserMessageContentUnion], str]

The message content sent by the user (can be a string or an array of multi-modal content parts)

Accepts one of the following:
ContentUnionMember0 = List[LettaUserMessageContentUnion]
Accepts one of the following:
class TextContent:
text: str

The text content of the message.

signature: Optional[str]

Stores a unique identifier for any reasoning associated with this text content.

type: Optional[Literal["text"]]

The type of the message.

Accepts one of the following:
"text"
class ImageContent:
source: Source

The source of the image.

Accepts one of the following:
class SourceURLImage:
url: str

The URL of the image.

type: Optional[Literal["url"]]

The source type for the image.

Accepts one of the following:
"url"
class SourceBase64Image:
data: str

The base64 encoded image data.

media_type: str

The media type for the image.

detail: Optional[str]

What level of detail to use when processing and understanding the image (low, high, or auto to let the model decide)

type: Optional[Literal["base64"]]

The source type for the image.

Accepts one of the following:
"base64"
class SourceLettaImage:
file_id: str

The unique identifier of the image file persisted in storage.

data: Optional[str]

The base64 encoded image data.

detail: Optional[str]

What level of detail to use when processing and understanding the image (low, high, or auto to let the model decide)

media_type: Optional[str]

The media type for the image.

type: Optional[Literal["letta"]]

The source type for the image.

Accepts one of the following:
"letta"
type: Optional[Literal["image"]]

The type of the message.

Accepts one of the following:
"image"
ContentUnionMember1 = str
date: datetime
is_err: Optional[bool]
message_type: Optional[Literal["user_message"]]

The type of the message.

Accepts one of the following:
"user_message"
name: Optional[str]
otid: Optional[str]
run_id: Optional[str]
sender_id: Optional[str]
seq_id: Optional[int]
step_id: Optional[str]
class ReasoningMessage:

Representation of an agent's internal reasoning.

Args: id (str): The ID of the message date (datetime): The date the message was created in ISO format name (Optional[str]): The name of the sender of the message source (Literal["reasoner_model", "non_reasoner_model"]): Whether the reasoning content was generated natively by a reasoner model or derived via prompting reasoning (str): The internal reasoning of the agent signature (Optional[str]): The model-generated signature of the reasoning step

id: str
date: datetime
reasoning: str
is_err: Optional[bool]
message_type: Optional[Literal["reasoning_message"]]

The type of the message.

Accepts one of the following:
"reasoning_message"
name: Optional[str]
otid: Optional[str]
run_id: Optional[str]
sender_id: Optional[str]
seq_id: Optional[int]
signature: Optional[str]
source: Optional[Literal["reasoner_model", "non_reasoner_model"]]
Accepts one of the following:
"reasoner_model"
"non_reasoner_model"
step_id: Optional[str]
class HiddenReasoningMessage:

Representation of an agent's internal reasoning where reasoning content has been hidden from the response.

Args: id (str): The ID of the message date (datetime): The date the message was created in ISO format name (Optional[str]): The name of the sender of the message state (Literal["redacted", "omitted"]): Whether the reasoning content was redacted by the provider or simply omitted by the API hidden_reasoning (Optional[str]): The internal reasoning of the agent

id: str
date: datetime
state: Literal["redacted", "omitted"]
Accepts one of the following:
"redacted"
"omitted"
hidden_reasoning: Optional[str]
is_err: Optional[bool]
message_type: Optional[Literal["hidden_reasoning_message"]]

The type of the message.

Accepts one of the following:
"hidden_reasoning_message"
name: Optional[str]
otid: Optional[str]
run_id: Optional[str]
sender_id: Optional[str]
seq_id: Optional[int]
step_id: Optional[str]
class ToolCallMessage:

A message representing a request to call a tool (generated by the LLM to trigger tool execution).

Args: id (str): The ID of the message date (datetime): The date the message was created in ISO format name (Optional[str]): The name of the sender of the message tool_call (Union[ToolCall, ToolCallDelta]): The tool call

id: str
date: datetime
Deprecatedtool_call: ToolCall
Accepts one of the following:
class ToolCall:
arguments: str
name: str
tool_call_id: str
class ToolCallDelta:
arguments: Optional[str]
name: Optional[str]
tool_call_id: Optional[str]
is_err: Optional[bool]
message_type: Optional[Literal["tool_call_message"]]

The type of the message.

Accepts one of the following:
"tool_call_message"
name: Optional[str]
otid: Optional[str]
run_id: Optional[str]
sender_id: Optional[str]
seq_id: Optional[int]
step_id: Optional[str]
tool_calls: Optional[ToolCalls]
Accepts one of the following:
ToolCallsUnionMember0 = List[ToolCall]
arguments: str
name: str
tool_call_id: str
class ToolCallDelta:
arguments: Optional[str]
name: Optional[str]
tool_call_id: Optional[str]
class ToolReturnMessage:

A message representing the return value of a tool call (generated by Letta executing the requested tool).

Args: id (str): The ID of the message date (datetime): The date the message was created in ISO format name (Optional[str]): The name of the sender of the message tool_return (str): The return value of the tool (deprecated, use tool_returns) status (Literal["success", "error"]): The status of the tool call (deprecated, use tool_returns) tool_call_id (str): A unique identifier for the tool call that generated this message (deprecated, use tool_returns) stdout (Optional[List(str)]): Captured stdout (e.g. prints, logs) from the tool invocation (deprecated, use tool_returns) stderr (Optional[List(str)]): Captured stderr from the tool invocation (deprecated, use tool_returns) tool_returns (Optional[List[ToolReturn]]): List of tool returns for multi-tool support

id: str
date: datetime
Deprecatedstatus: Literal["success", "error"]
Accepts one of the following:
"success"
"error"
Deprecatedtool_call_id: str
Deprecatedtool_return: str
is_err: Optional[bool]
message_type: Optional[Literal["tool_return_message"]]

The type of the message.

Accepts one of the following:
"tool_return_message"
name: Optional[str]
otid: Optional[str]
run_id: Optional[str]
sender_id: Optional[str]
seq_id: Optional[int]
Deprecatedstderr: Optional[List[str]]
Deprecatedstdout: Optional[List[str]]
step_id: Optional[str]
tool_returns: Optional[List[ToolReturn]]
status: Literal["success", "error"]
Accepts one of the following:
"success"
"error"
tool_call_id: str
tool_return: str
stderr: Optional[List[str]]
stdout: Optional[List[str]]
type: Optional[Literal["tool"]]

The message type to be created.

Accepts one of the following:
"tool"
class AssistantMessage:

A message sent by the LLM in response to user input. Used in the LLM context.

Args: id (str): The ID of the message date (datetime): The date the message was created in ISO format name (Optional[str]): The name of the sender of the message content (Union[str, List[LettaAssistantMessageContentUnion]]): The message content sent by the agent (can be a string or an array of content parts)

id: str
content: Union[List[LettaAssistantMessageContentUnion], str]

The message content sent by the agent (can be a string or an array of content parts)

Accepts one of the following:
ContentUnionMember0 = List[LettaAssistantMessageContentUnion]
text: str

The text content of the message.

signature: Optional[str]

Stores a unique identifier for any reasoning associated with this text content.

type: Optional[Literal["text"]]

The type of the message.

Accepts one of the following:
"text"
ContentUnionMember1 = str
date: datetime
is_err: Optional[bool]
message_type: Optional[Literal["assistant_message"]]

The type of the message.

Accepts one of the following:
"assistant_message"
name: Optional[str]
otid: Optional[str]
run_id: Optional[str]
sender_id: Optional[str]
seq_id: Optional[int]
step_id: Optional[str]
class ApprovalRequestMessage:

A message representing a request for approval to call a tool (generated by the LLM to trigger tool execution).

Args: id (str): The ID of the message date (datetime): The date the message was created in ISO format name (Optional[str]): The name of the sender of the message tool_call (ToolCall): The tool call

id: str
date: datetime
Deprecatedtool_call: ToolCall

The tool call that has been requested by the llm to run

Accepts one of the following:
class ToolCall:
arguments: str
name: str
tool_call_id: str
class ToolCallDelta:
arguments: Optional[str]
name: Optional[str]
tool_call_id: Optional[str]
is_err: Optional[bool]
message_type: Optional[Literal["approval_request_message"]]

The type of the message.

Accepts one of the following:
"approval_request_message"
name: Optional[str]
otid: Optional[str]
run_id: Optional[str]
sender_id: Optional[str]
seq_id: Optional[int]
step_id: Optional[str]
tool_calls: Optional[ToolCalls]

The tool calls that have been requested by the llm to run, which are pending approval

Accepts one of the following:
ToolCallsUnionMember0 = List[ToolCall]
arguments: str
name: str
tool_call_id: str
class ToolCallDelta:
arguments: Optional[str]
name: Optional[str]
tool_call_id: Optional[str]
class ApprovalResponseMessage:

A message representing a response form the user indicating whether a tool has been approved to run.

Args: id (str): The ID of the message date (datetime): The date the message was created in ISO format name (Optional[str]): The name of the sender of the message approve: (bool) Whether the tool has been approved approval_request_id: The ID of the approval request reason: (Optional[str]) An optional explanation for the provided approval status

id: str
date: datetime
Deprecatedapproval_request_id: Optional[str]

The message ID of the approval request

approvals: Optional[List[Approval]]

The list of approval responses

Accepts one of the following:
class ApprovalApprovalReturn:
approve: bool

Whether the tool has been approved

tool_call_id: str

The ID of the tool call that corresponds to this approval

reason: Optional[str]

An optional explanation for the provided approval status

type: Optional[Literal["approval"]]

The message type to be created.

Accepts one of the following:
"approval"
class ToolReturn:
status: Literal["success", "error"]
Accepts one of the following:
"success"
"error"
tool_call_id: str
tool_return: str
stderr: Optional[List[str]]
stdout: Optional[List[str]]
type: Optional[Literal["tool"]]

The message type to be created.

Accepts one of the following:
"tool"
Deprecatedapprove: Optional[bool]

Whether the tool has been approved

is_err: Optional[bool]
message_type: Optional[Literal["approval_response_message"]]

The type of the message.

Accepts one of the following:
"approval_response_message"
name: Optional[str]
otid: Optional[str]
Deprecatedreason: Optional[str]

An optional explanation for the provided approval status

run_id: Optional[str]
sender_id: Optional[str]
seq_id: Optional[int]
step_id: Optional[str]
class SummaryMessage:

A message representing a summary of the conversation. Sent to the LLM as a user or system message depending on the provider.

id: str
date: datetime
summary: str
is_err: Optional[bool]
message_type: Optional[Literal["summary"]]
Accepts one of the following:
"summary"
name: Optional[str]
otid: Optional[str]
run_id: Optional[str]
sender_id: Optional[str]
seq_id: Optional[int]
step_id: Optional[str]
class EventMessage:

A message for notifying the developer that an event that has occured (e.g. a compaction). Events are NOT part of the context window.

id: str
date: datetime
event_data: Dict[str, object]
event_type: Literal["compaction"]
Accepts one of the following:
"compaction"
is_err: Optional[bool]
message_type: Optional[Literal["event"]]
Accepts one of the following:
"event"
name: Optional[str]
otid: Optional[str]
run_id: Optional[str]
sender_id: Optional[str]
seq_id: Optional[int]
step_id: Optional[str]
stop_reason: StopReason

The stop reason from Letta indicating why agent loop stopped execution.

stop_reason: StopReasonType

The reason why execution stopped.

Accepts one of the following:
"end_turn"
"error"
"llm_api_error"
"invalid_llm_response"
"invalid_tool_call"
"max_steps"
"no_tool_call"
"tool_rule"
"cancelled"
"requires_approval"
message_type: Optional[Literal["stop_reason"]]

The type of the message.

Accepts one of the following:
"stop_reason"
usage: Usage

The usage statistics of the agent.

completion_tokens: Optional[int]

The number of tokens generated by the agent.

message_type: Optional[Literal["usage_statistics"]]
Accepts one of the following:
"usage_statistics"
prompt_tokens: Optional[int]

The number of tokens in the prompt.

run_ids: Optional[List[str]]

The background task run IDs associated with the agent interaction

step_count: Optional[int]

The number of steps taken by the agent.

total_tokens: Optional[int]

The total number of tokens processed by the agent.

Send Group Message
from letta_client import Letta

client = Letta(
    api_key="My API Key",
)
letta_response = client.groups.messages.send(
    group_id="group-123e4567-e89b-42d3-8456-426614174000",
)
print(letta_response.messages)
{
  "messages": [
    {
      "id": "id",
      "content": "content",
      "date": "2019-12-27T18:11:19.117Z",
      "is_err": true,
      "message_type": "system_message",
      "name": "name",
      "otid": "otid",
      "run_id": "run_id",
      "sender_id": "sender_id",
      "seq_id": 0,
      "step_id": "step_id"
    }
  ],
  "stop_reason": {
    "stop_reason": "end_turn",
    "message_type": "stop_reason"
  },
  "usage": {
    "completion_tokens": 0,
    "message_type": "usage_statistics",
    "prompt_tokens": 0,
    "run_ids": [
      "string"
    ],
    "step_count": 0,
    "total_tokens": 0
  }
}
Returns Examples
{
  "messages": [
    {
      "id": "id",
      "content": "content",
      "date": "2019-12-27T18:11:19.117Z",
      "is_err": true,
      "message_type": "system_message",
      "name": "name",
      "otid": "otid",
      "run_id": "run_id",
      "sender_id": "sender_id",
      "seq_id": 0,
      "step_id": "step_id"
    }
  ],
  "stop_reason": {
    "stop_reason": "end_turn",
    "message_type": "stop_reason"
  },
  "usage": {
    "completion_tokens": 0,
    "message_type": "usage_statistics",
    "prompt_tokens": 0,
    "run_ids": [
      "string"
    ],
    "step_count": 0,
    "total_tokens": 0
  }
}