List available embedding models using the asynchronous implementation for improved performance.
Returns EmbeddingModel format which extends EmbeddingConfig with additional metadata fields. Legacy EmbeddingConfig fields are marked as deprecated but still available for backward compatibility.
Returns
List Embedding Models
from letta_client import Letta
client = Letta(
api_key="My API Key",
)
embedding_models = client.models.embeddings.list()
print(embedding_models)
[
{
"display_name": "display_name",
"embedding_dim": 0,
"embedding_endpoint_type": "openai",
"embedding_model": "embedding_model",
"name": "name",
"provider_name": "provider_name",
"provider_type": "anthropic",
"azure_deployment": "azure_deployment",
"azure_endpoint": "azure_endpoint",
"azure_version": "azure_version",
"batch_size": 0,
"embedding_chunk_size": 0,
"embedding_endpoint": "embedding_endpoint",
"handle": "handle",
"model_type": "embedding"
}
]Returns Examples
[
{
"display_name": "display_name",
"embedding_dim": 0,
"embedding_endpoint_type": "openai",
"embedding_model": "embedding_model",
"name": "name",
"provider_name": "provider_name",
"provider_type": "anthropic",
"azure_deployment": "azure_deployment",
"azure_endpoint": "azure_endpoint",
"azure_version": "azure_version",
"batch_size": 0,
"embedding_chunk_size": 0,
"embedding_endpoint": "embedding_endpoint",
"handle": "handle",
"model_type": "embedding"
}
]